© 2016 Kuta Software LLC. All rights reserved.

Arithmetic and Geometric Sequences

Date Period

Find the three terms in the sequence after the last one given. Write a brief description of the pattern.

Sequences involving repeated addition or subtraction are known as Arithmetic. (Think of subtraction as adding a negative number and these can all be written as addition patterns.)

9) Go back and circle the problem numbers in the above sequences (1-8) which represent Arithmetic sequences.

10) 23, 26, 29, 32, ...

- a) Find the common difference.
- b) Write an explicit formula for the sequence
- c) Find a_{37}
- 11) 10, 1, -8, -17, ...
 - a) Find the common difference.
 - b) Write an explicit formula for the sequence
 - c) Find a_{31}

Find the common difference, the explicit formula, and the term named in the problem.

12) 31, -69, -169, -269, ... Find
$$a_{_{40}}$$

13)
$$-22$$
, -222 , -422 , -622 , ... Find a_{32}

14) 12, 16, 20, 24, ... Find
$$a_{30}$$

15) 0, -4, -8, -12, ... Find
$$a_{31}$$

16) -10, -30, -50, -70, ... Find
$$a_{21}$$

17) 11, 20, 29, 38, ... Find
$$a_{34}$$

18)
$$-38$$
, -36 , -34 , -32 , ... Find a_{21}

19) 40,
$$-160$$
, -360 , -560 , ... Find a_{23}

20) 14, 24, 34, 44, ... Find
$$a_{31}$$

21) 22, 52, 82, 112, ...
Find
$$a_{36}$$

Sequences involving repeated multiplication or division are known as Geometric. (Think of division as multiplying by a fraction and these can all be written as multiplication patterns.)

- 22) Go back and look at questions 1-8. Those sequences that you did not circle for question #9 should all be Geometric.
- 23) -4, 8, -16, 32, ...

- a) Find the common ratio.
- b) Write an explicit formula for the sequence
- c) Find a_{10}

24) 32, 16, 8, 4, ...

- a) Find the common ratio.
- b) Write an explicit formula for the sequence
- c) Find a_{10}

Find the common ratio, the explicit formula, and the term named in the problem.

25)
$$-1$$
, -2 , -4 , -8 , ... Find a_{11}

26)
$$-\frac{1}{2}$$
, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$, ...
Find a_{10}

27) -2, 6, -18, 54, ... Find
$$a_{12}$$

28) 4, 8, 16, 32, ... Find
$$a_{10}$$

29)
$$-0.75$$
, -3 , -12 , -48 , ... Find a_9

30) 0.5, -1, 2, -4, ... Find
$$a_{11}$$

31) -2, 10, -50, 250, ... Find
$$a_9$$

32) 4, 16, 64, 256, ... Find
$$a_9$$

33)
$$-0.5$$
, 1, -2 , 4, ... Find a_{12}

34)
$$-1$$
, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, ...
Find a_{11}

Arithmetic and Geometric Sequences

Date Period

Find the three terms in the sequence after the last one given. Write a brief description of the pattern.

Sequences involving repeated addition or subtraction are known as Arithmetic. (Think of subtraction as adding a negative number and these can all be written as addition patterns.)

9) Go back and circle the problem numbers in the above sequences (1-8) which represent Arithmetic sequences.

Common Difference:
$$d = 3$$

 $a_{37} = 131$
Explicit: $a_n = 20 + 3n$

- a) Find the common difference.
- b) Write an explicit formula for the sequence
- c) Find a_{37}

Common Difference:
$$d = -9$$

 $a_{31} = -260$
Explicit: $a_n = 10 + (n-1) \cdot -9$

- a) Find the common difference.
- b) Write an explicit formula for the sequence
- c) Find a_{31}

Find the common difference, the explicit formula, and the term named in the problem.

12) 31, -69, -169, -269, ... Find
$$a_{40}$$

Common Difference:
$$d = -100$$

 $a_{40} = -3869$
Explicit: $a_n = 31 + (n-1) \cdot -100$

14) 12, 16, 20, 24, ... Find
$$a_{_{30}}$$

Common Difference:
$$d = 4$$

 $a_{30} = 128$
Explicit: $a_n = 12 + (n-1) \cdot 4$

16) -10, -30, -50, -70, ... Find
$$a_{21}$$

Common Difference:
$$d = -20$$

 $a_{21} = -410$
Explicit: $a_{n} = -10 + (n-1) \cdot -20$

18)
$$-38$$
, -36 , -34 , -32 , ...
Find a_{21}
Common Difference: $d = 2$

Explicit:
$$a_{21} = 2$$

20) 14, 24, 34, 44, ... Find
$$a_{31}$$

Common Difference:
$$d = 10$$

 $a_{31} = 314$
Explicit: $a_n = 14 + (n-1) \cdot 10$

13)
$$-22$$
, -222 , -422 , -622 , ... Find a_{32}

Common Difference:
$$d = -200$$

 $a_{32} = -6222$
Explicit: $a_n = -22 + (n-1) \cdot -200$

15) 0, -4, -8, -12, ... Find
$$a_{31}$$

Common Difference:
$$d = -4$$

 $a_{31} = -120$
Explicit: $a_n = 0 + (n-1) \cdot -4$

17) 11, 20, 29, 38, ... Find
$$a_{34}$$

Common Difference:
$$d = 9$$

 $a_{34} = 308$
Explicit: $a_n = 11 + (n-1) \cdot 9$

19) 40,
$$-160$$
, -360 , -560 , ... Find a_{23}

Common Difference:
$$d = -200$$

 $a_{23} = -4360$
Explicit: $a_n = 40 + (n-1) \cdot -200$

21) 22, 52, 82, 112, ... Find
$$a_{36}$$

Common Difference:
$$d = 30$$

 $a_{36} = 1072$
Explicit: $a_n = 22 + (n-1) \cdot 30$

Sequences involving repeated multiplication or division are known as Geometric. (Think of division as multiplying by a fraction and these can all be written as multiplication patterns.)

- 22) Go back and look at questions 1-8. Those sequences that you did not circle for question #9 should all be Geometric.
- 23) -4, 8, -16, 32, ...

- a) Find the common ratio.
- b) Write an explicit formula for the sequence
- c) Find a_{10}

Common Ratio:
$$r = -2$$

 $a_{10} = 2048$
Explicit: $a_n = -4 \cdot (-2)^{n-1}$

24) 32, 16, 8, 4, ...

Common Ratio:
$$r = \frac{1}{2}$$

$$a_{10} = \frac{1}{16}$$

Explicit:
$$a_n = 32 \cdot \left(\frac{1}{2}\right)^{n-1}$$

- a) Find the common ratio.
- b) Write an explicit formula for the sequence
- c) Find a_{10}

Find the common ratio, the explicit formula, and the term named in the problem.

25)
$$-1$$
, -2 , -4 , -8 , ...
Find a_{11}

Common Ratio:
$$r = 2$$

 $a_{11} = -1024$
Explicit: $a_n = -2^{n-1}$

26)
$$-\frac{1}{2}$$
, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$, ... Common Ratio: $r = \frac{1}{2}$

Find a_{10}

$$a_{10} = -\frac{1}{1024}$$

Explicit: $a_n = -\frac{1}{2} \cdot \left(\frac{1}{2}\right)^{n-1}$

27) -2, 6, -18, 54, ...
Find
$$a_{12}$$

Common Ratio: $r = -3$
 $a_{12} = 354294$
Explicit: $a_n = -2 \cdot (-3)^{n-1}$

28) 4, 8, 16, 32, ...
Find
$$a_{10}$$

Common Ratio: $r = 2$
 $a_{10} = 2048$
Explicit: $a_n = 4 \cdot 2^{n-1}$

29)
$$-0.75$$
, -3 , -12 , -48 , ...
Find a_9
Common Ratio: $r = 4$
 $a_9 = -49152$
Explicit: $a_n = -0.75 \cdot 4^{n-1}$

30) 0.5, -1, 2, -4, ...
Find
$$a_{11}$$

Common Ratio: $r = -2$
 $a_{11} = 512$
Explicit: $a_n = 0.5 \cdot (-2)^{n-1}$

31) -2, 10, -50, 250, ...
Find
$$a_9$$

Common Ratio: $r = -5$
 $a_9 = -781250$
Explicit: $a_n = -2 \cdot (-5)^{n-1}$

32) 4, 16, 64, 256, ...
Find
$$a_9$$

Common Ratio: $r = 4$
 $a_9 = 262144$
Explicit: $a_n = 4 \cdot 4^{n-1}$

33)
$$-0.5$$
, 1, -2 , 4, ...
Find a_{12}
Common Ratio: $r = -2$
 $a_{12} = 1024$
Explicit: $a_n = -0.5 \cdot (-2)^{n-1}$

34) -1,
$$-\frac{1}{2}$$
, $-\frac{1}{4}$, $-\frac{1}{8}$, ... Common Ratio: $r = \frac{1}{2}$

Find a_{11}

$$a_{11} = -\frac{1}{1024}$$
Explicit: $a_n = -\left(\frac{1}{2}\right)^{n-1}$