

Solutions for Topic 1 – Measurements and uncertainties

- **1. a)** kg ms⁻² **d)** A s
- **b)** kg $m^2 s^{-3}$ **e)** kg $m^2 s^{-1} A^{-1}$ c) kg $m^{-1}s^{-2}$ 2. a) 258 **d)** 7870 **b)** 0.00235 **e)** 2.00
- **c)** 0.178
- 3. a) 4.3 **d)** 2.0×10^9 **b)** 6.4×10^{-2} **e)** 3.8×10^2
 - c) 2.16×10^3
- **4. a)** 11 kV **d)** 0.422 μm or 422 nm
 - **b)** 0.422 mm or 422 μm e) 0.35 pC or 350 fC
 - **c)** 85 GW
- **5. a)** 10^{-1} m (a few 10s of cm)
 - **b)** $10^{-4} 10^{-2}$ kg (flies come in many different shapes and sizes!)
 - c) 10^{-19} C $(1.6 \times 10^{-19}$ C)
 - **d)** 10^{10} year (13.7 billion years)
 - e) $10^8 \text{ ms}^{-1} (3.0 \times 10^8 \text{ ms}^{-1})$
- 6. a) $\frac{2 \times 3 \times 5}{500} = \frac{6}{100} = 0.06$
 - **b)** between 70 and 74 mJ
- 7. $3.0 \pm 0.4; \pm 13.3\%$ (or rounding up $\pm 14\%$)
- 8. $\frac{\Delta s}{s} = \frac{\Delta g}{q} + 2 \frac{\Delta t}{t} = 0.02 + (2 \times 0.03) = 0.08 = \pm 8\%$ 9. $\frac{\Delta r}{r} = \frac{1}{2} \left(\frac{\Delta h}{h} + \frac{\Delta V}{V} \right) = 0.5 \times 0.02 \times 0.05 = 0.035 = \pm 4\%$
- **10. a)** check line of best fit reasonable
 - **b)** A = y-intercept; B = gradient
 - c) use difference between steepest and shallowest gradients
- **11.** a) check line of best fit reasonable
 - **b)** log $F = n \log x + \log k$; plot log *F* against log *x* and find gradient of graph which is *n* **c)** $p = \frac{8.5 \times 10^{-2}}{\pi \times 4.5 \times 10^{-6}} = 1.3 \times 10^{9} \text{ Nm}^{-2}$

d)
$$\frac{\Delta A}{A} = 2 \frac{\Delta r}{r} = 2 \times \frac{0.1 \times 10^{-6}}{4.5 \times 10^{-6}} = 0.04 = \pm 4\%$$

- 12. (1850 \pm 50) m at angle of N (60 \pm 5) °E from scale starting point
- **13.** magnitude = $\sqrt{5^2 + 3^2} = 5.8$ N $\tan \theta = \frac{5}{3}; \theta = 31^{\circ}$ to horizontal
- **14. a)** magnitude of velocity = $\sqrt{1.5^2 + 0.8^2} = 1.7 \text{ m s}^{-1}$
 - $\tan \theta = \frac{0.8}{1.5}; \ \theta = 28^{\circ}$ with original direction
 - **b)** $s \cos 28 = 50$; displacement s = 57 m
- **15.** component parallel to slope = $mg \sin \theta = 850 \times 9.8 \sin 25 = 3500$ N