

Solutions for Topic 7 – Atomic, nuclear, and particle physics

- 1. a) use collimator and pass through diffraction grating to disperse light
 - **b)** $E = hf = \frac{hc}{\lambda} = 4.09 \times 10^{-19} \text{ J}$
 - c) (i) need line at -1.35×10^{-19} J to give correct wavelength transitions
 - (ii) arrow from -1.35×10^{-19} J to -2.41×10^{-19} J: 1880 nm transition arrow from -1.35×10^{-19} J to -5.44×10^{-19} J: 486 nm transition
- **2.** a) $E = hf = \frac{hc}{\lambda} = 3.03 \times 10^{-19} \text{ J} = 1.9 \text{ eV}$
 - **b)** (i) line from -1.5 to -3.4 eV level
 - (ii) $\Delta \lambda = 486$ nm so $\Delta E = 2.6$ eV so line from -0.85 to -3.4 eV level
- **3. a)** Isotopes are nuclides of the same element with the same number of protons but different numbers of neutrons
 - **b)** beta minus decay proton number increases by one as neutron is converted to proton; electron antineutrino produced
 - c) check a sensible line of best fit (exponential decay curve) is drawn
 - d) half life = time for activity to decrease to half original value Activity decreases from 3.2×10^5 Bq to 1.6×10^5 Bq in around 8 days
- **4. a)** neutron converting into proton, so beta minus decay; nucleon number (total number of protons and neutrons) stays the same; electron and electron antineutrino also produced

- c) point on graph where number of calcium nuclei is 7 times greater than number of potassium nuclei
- 5. a) proton or neutron
 - b) work needed to break nucleus into its constituent nucleons
 - **c)** most stable nuclide is Fe-56; lighter nuclei are less tightly bound so can release energy when they are fused together; heavier nuclei are less stable and can split into smaller constituents, releasing energy in fission

- 6. a) mass defect is 3.01603 (2 × 1.00728) 1.00867 = -7.2 × 10⁻³ u total binding energy is 7.2 × 10⁻³ × 931.5 = 6.7 MeV 3 nucleons so binding energy per nucleon is 2.2 MeV
 - **b) (i)** fusion reaction

- (iii) Helium nucleus is less stable than most stable nuclide, so energy is released when two nuclei are fused together
- **7. a)** nuclear fission is the splitting of a heavy nucleus into smaller nuclei, producing energy; radioactive decay is when an unstable nucleus will spontaneously change into a different nuclear configuration
 - b) (i) get number of neutrons by balancing charges ${}^{235}_{92}U + {}^{1}_{0}n {}^{90}_{38}Sr + {}^{142}_{54}Xe + 4{}^{1}_{0}n$
 - (ii) neutron turns into proton, so nucleon number remains the same but proton number increases by one
- 8. a) nuclear fission
 - **b)** (235.0439 + 1.0087) (95.9342 + 137.9112 + 2 × 1.0087) = 0.1898 u Energy = $0.1898 \times 931.5 = 177$ MeV
 - c) neutrons released can go on to cause more fission reactions, leading to a chain reaction
 - **d)** nuclear binding energy
- 9. a) weak
 - **b)** W⁺ boson
 - c) electron neutrino
- **10. a**) **(i)** allowed (charge and lepton number conserved)
 - (ii) not allowed (baryon number not conserved)
 - (iii) not allowed (charge and baryon number not conserved)
 - **b)** can have W⁺, W⁻, or Z boson
- 11. a) meson (2 quark structure)
 - **b)** uud
 - c) $s\bar{u} + uud = d\bar{s} + u\bar{s} + sss$ baryon number and strangeness both conserved
- **12. a)** exchange particle carries the force between particles; said to be virtual because it is not detected during exchange
 - **b)** W⁻ boson (diagram shows β^- decay)